
NEUSORT2.0: A Multiple-channel Neural Signal Processor with
Systolic Array Buffer and Channel-interleaving Processing Schedule

Tung-Chien Chen1,2, Zhi Yang1, Wentai Liu1,3 and Liang-Gee Chen2

1University of California, Santa Cruz, CA, USA; 2National Taiwan University, Taipei, Taiwan;
3National Chiao-Tung University, Hsinchu, Taiwan; Email: djchen@video.ee.ntu.edu.tw

Abstract— An emerging class of neuroprosthetic devices aims
to provide aggressive performance by integrating more com-
plicated signal processing hardware into the neural recording
system with a large amount of electrodes. However, the tradi-
tional parallel structure duplicating one neural signal processor
(NSP) multiple times for multiple channels takes a heavy burden
on chip area. The serial structure sequentially switching the
processing task between channels requires a bulky memory
to store neural data and may has a long processing latency.
In this paper, a memory hierarchy of systolic array buffer
is proposed to support channel-by-channel signal processing
in cycle basis. The neural data from multiple channels can
thus be interleavingly processed in real time with the minimum
processing latency, and the NSP can be tightly coupled to the
analog frontend interface circuitry without any bulky memory.
Based on our previous one-channel NSP of NEUSORT1.0 [1],
the proposed memory hierarchy is realized on NEUSORT2.0
for a 16-channel neural recording system. Compared to 16 of
NEUSORT1.0, NEUSORT2.0 demonstrates a 81.50% saving in
terms of area×power factor.

I. INTRODUCTION

Recent research field of neuroprosthetics has demonstrated
that monkeys and human can move computer cursors and
robotic arms directly by thought. These proof-of-concept
laboratory demonstrations motivate the development of a
wireless implantable neural prosthesis that will reduce the
surgical infection risk and enable the free movement of test
subjects by eliminating chronic transcutaneous connectors
and bulky host computers. In such an approach, frontend
integrated neural signal processors detecting spike events,
extracting features, classifying individual neurons, and de-
coding inherent meaning can significantly reduce the data
bandwidth and is a key to enable such wireless neuropros-
thetic device [2], [3].

Several state-or-art neural signal processing hardware
along with the analog frontend interface circuitry have
been proposed. In [4], [5], comparator-based spike detection
modules are integrated in multiple-channel neural recording
systems. However, it transmit the binary event streams of the
detected neural events, and the significant loss of information
limits the ability of classification and sorting of individual
neuron signal sources. In [6], a lossy wavelet transformation
algorithm and the corresponding architecture are proposed.
However, the data reduction ratio is small, and the effect of
compression loss in sorting feasibility is still unknown.

Recently, an emerging class of neuroprosthetic devices
aims to provide aggressive performance by realizing more

advanced signal processing algorithms in particular real-time
spike sorting on chips. In [1], a neural signal processor
composed of nonlinear-energy-operator-based (NEO-based)
spike detector [7], a noise shaping programmable filter, and
a maximum-minimum feature extraction engine is integrated
in a 128-channel neural recording system. However, it can
only support realtime processing on one of the 16 channels,
which is still far from the expectation.

It is challenging to provide real-time low-latency signal
processing hardware for spike sorting algorithms for multi-
ple channels with low-power and small-area constraints in
neuroprosthetic devices. To support multiple channels, the
parallel structure is typically used by duplicating the basic
processing units multiple times for multiple channels [4]–[6].
However, this approach will take a heavy burden in chip area
by duplicating the powerful basic processing units supporting
more complicated algorithms.

The folding technique that sequentially does data process-
ing channel by channel on one hardware unit is possible since
the modern fabrication processes allow us to drive hardware
with more than thousand times of the frequency of the neural
recording sampling rate. However, a sophisticated memory
hierarchy and the corresponding processing schedule are
essential in order to not increase the area and power burdens,
and also meet the real-time and short latency requirements.

In this paper, based on the NEUSORT1.0—an one channel
neural signal processor [1], a systolic register array structure
along with a channel-interleaving schedule is proposed to
efficiently support multiple-channel neural signal processing
with one processing unit. The reminder of this paper is
organized as follows. In section II, the NEUSORT1.0 and
the interface of analog frontend interface circuitry are briefly
reviewed, and the problems of parallel and serial structures
are analyzed. In section III, the memory hierarchy of systolic
buffer array structure is proposed along with the channel-
interleaving schedule. Section IV presents the implementa-
tion results of NEUSORT2.0, a multiple-channel version of
NEUSORT1.0, and Section V concludes this work.

II. BACKGROUND AND PROBLEM STATEMENT

A. NEUSORT1.0—One Channel Neural Signal Processor

Figure 1 shows the block diagram of the one-channel
neural signal processor [1] that has a 32-tap programmable
noise shaping filter, a NEO-based spike detector [7], and
a maximum/minimum feature extraction engine. For the

Spike
Detector

Coefficients Register Array

Feature Extractor
With Max-Min

Detector

System Control Unit

Programmable
Noise Shaping Filter

Coder
&

Packer

neural
signal

(from ADC)

control
signal

(from system
bus)

Feature Buffer
Serial-to-Parallel Register Array

spike
Feature

(to system
bus)

Reg Reg Reg Reg...

Fig. 1. The block diagram of NEUSORT1.0, an one-channel neural signal
processor [1].

detailed algorithm description, please refer to [8]. The input
are 9-bit serial neural samples from the analog frontend
interface circuitry. The output data after the signal processing
consist of 64 bits of three features and timing information of
the spike events. Each spike is processed, encoded and sent
out on-the-fly within 41 cycles (1.025msec, the processing
delay time between the peak sample of a spike event input
to the hardware and the last feature score output from the
hardware).

During the initial configuration, 32 9-bit filter coefficients
for noise shaping operation and a 16-bit threshold value for
spike detection are programmed into the coefficient register
array. These values can be trained off-chip based on few
seconds of initial recordings. During the regular operation,
the neural samples are serially input cycle by cycle and
shifted forward in the serial-to-parallel register array. After
39 cycles of the data fetch latency, this register array is fully
filled with a moving segment of neural waveform for the
following signal processing.

There are three processing units—NEO-based spike de-
tector, noise shaping filter, and max-min feature extractor.
The spike detector and noise shaping filter are operated in
cycle basis. Spike detector calculates the energy function for
a latest 7 samples of neural waveform inside the register
array every cycle. Once the result reaches the threshold at
the peak of the convex curve, a find-spike-event signal will
be fired. The noise shaping filter takes the rest 32 neural
samples, and output one filtered result after the convolution
between neural samples and the filtering coefficients in the
coefficient register array. This filter serves a two-folded pur-
pose. First, it is used as the band-pass filter to reject the low-
frequency noise and high-frequency thermal noise. Second,
the filter outputs the derivative of the spike waveforms for the
following feature extraction. The feature extraction engine
is operated in event basis. If a spike event is recognized,
the feature generation engine is reset and then continuously
monitor the maximum and minimum values from the filtered
spike samples in the next 32 cycles. During these 32 cycles,
the intermediary results of maximum and minimum values
of the detected spike event are stored in the feature buffer.
The final feature scores along with event timing information
are packed and output through the coder&packer. These
procedures, including detection, filtering, feature extraction,
and coding, are operated in parallel to meet the real-time
requirement.

Data_Ch01 Data_Ch02 Data_Ch03 Data_Ch16
...

...

...Data_Ch01Ch15

Clock :

Output :

16 cycles

Fig. 2. In order to optimize the trade-off between power consumption
and chip area, an ADC and part of amplifier are usually shared by multiple
channels. The output are the channel-interleavingly time-multiplexed serial
data.

One-Channel Neural Signal Processor (NEUSORT1.0)

One-Channel Neural Signal Processor (NEUSORT1.0)

One-Channel Neural Signal Processor (NEUSORT1.0)
... M

ul
tip

le
xe

r

To Wireless
Telemetry

Analog
Frontend

Analog
Frontend

Analog
Frontend

Fig. 3. The parallel structure to support multiple-channel neural signal
processing.

B. Analog Frontend Interface Circuitry

An analog frontend interface circuitry of neural record-
ing systems is generally composed of three main parts—
pre-amplifier, analog filter, and analog to digital converter
(ADC). In order to optimize the trade-off between power
consumption and chip area, an ADC and part of amplifier
are usually shared by multiple channels. The output are the
channel-interleavingly time-multiplexed serial data as shown
in Fig. 2. In this paper, the frontend interface circuitry with
16 channel per ADC is used as the optimal case in our
integrated mixed-signal system [9].

C. Serial and Parallel Structures for Multiple Channels

Two basic system structures, parallel and serial, are in-
vestigated and compared. Figure 3 shows the parallel struc-
ture. In order to support multiple channels, multiple neural
signal processors along with their analog frontend interface
circuitries are used in parallel. This structure may have the
smallest power consumption, because there is no additional
data buffering and processing requirement. However, it has
a large burden on chip area for both analog interface and
digital processing hardware.

Based on the optimized analog frontend interface circuitry
described in Section. II-B, a serial structure and the corre-
spond schedule is shown in Fig. 4. The neural data are output
interleavingly channel by channel from analog frontend inter-
face circuitry and buffered in a memory in order to rearrange
the data order for the following processing requirement.
During the data processing, the processor is locked by the
selected channel, and the corresponding neural data are read
sequentially from the memory. Several latency cycles are
required to pre-load data in the serial-to-parallel register
array (39 cycles in our case). This latency happens once

Optimized Analog
Frontend with
Shared ADC

Memory One-Channel Neural Signal
Processor (NEUSORT1.0)

To
Wireless

Telemetry

(a)

Latency to Load
Ch01 Data

Processing
for Ch01

Latency to Load
Ch02 Data

Processing
for Ch02

Latency to Load
Ch03 Data

Processing
for Ch03

Time Line

...
Locked by Ch01 Locked by Ch02 Locked by Ch03

(b)

Fig. 4. (a) The parallel structure to support multiple-channel neural signal
processing. (b)The correspond schedule.

when the processor switches from one channel to another.
In order to increase the hardware utilization, the processor
should be locked by one channel as long as possible. In this
way, a prohibitively large memory is required for the data
rearrangement. In this structure, the power consumption is
increased because of an addition buffering requirement for
the rearrangement. The chip area may be even larger because
of the bulk memory, and the processing latency will become
longer.

III. NEUSORT2.0—MULTI-CHANNEL NEURAL SIGNAL

PROCESSOR

A. Proposed Systolic Array Buffer and Channel-Interleaving
Processing Schedule

In order to have a small power consumption and chip
area, a systolic array buffer and the corresponding channel-
interleaving processing schedule are proposed to efficiently
support multiple-channel signal processing with one neural
signal processor. The idea is to do signal processing inter-
leavingly channel by channel in cycle basis to match up with
the data flow of the optimized frontend interface circuitry
described in Section II-B.

Figure 5 (a) shows the systolic array buffer for the input
neural data. In this case, the processing units process a
segment of spike waveforms in parallel within one cycle.
There are 16 rows of registers to store the spike waveforms
for 16 channels. Every cycle, the data shift forward in parallel
according to the arrows shown in Figure 5 (a). An example
of the data flow is shown in Fig. 6. The “s01-39” means the
39th neural sample of channel #01. In Fig. 6 (a), “s01-39”
is output from the analog frontend interface circuitry to the
systolic array. The 1st to 39th neural samples of channel #01
are output from the systolic array to the processing unit
for signal processing. At this cycle, the processor is locked
by channel #01. At the next cycle, the spike sample of the
next channel, “s02-39”, is output from the analog frontend
interface circuitry. The data in systolic array are shifted
forward. As shown in Fig. 6 (b), another 1st to 39th neural
samples of channel #02 are output from the systolic array
and processed by the processor. At this cycle, the processor
is locked by channel #02.

Figure 6 (c) summarizes the channel-interleavingly pro-
cessing schedule. The neural data are interleavingly output
channel by channel from analog frontend interface circuitry.
With the proposed input systolic array buffer, the signal
processing for different channels can also be scheduled
interleavingly in cycle basis. In this way, the neural signal
processor can be directly connected to the optimized analog
frontend interface circuitry without any bulky memory.

Figure 5 (b) shows another case of systolic array buffer to
store the intermediary result output from the processing unit
with the same channel-interleaving schedule. The processing
units here take more than one cycle to finish the procedure.
With the channel-interleaving schedule, the intermediary
results are stored and shifted in the systolic array buffer.
Every 16 cycles, this intermediary result is rotated back and
processed with the new input data.

Processing Unit
for One Channel

Data
Input

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Data
Output

... ...

...

Reg

Reg

Reg

Reg

Reg

...

...

...

...

1ch-Reg.

1ch-Reg.

1ch-Reg.

1ch-Reg.

1ch-Reg.

Processing Unit
for One Channel

Data
Input

Data
Output

...

(a) (b)

Fig. 5. (a) The systolic array buffer for the input neural data. (b) The
systolic array buffer for the intermediary output result.

...

s01-38 s01-37 s01-01

...s02-38 s02-37 s02-01

s03-38 s03-37 s03-01

s15-38 s15-37 s15-01
...

...

s16-38 s16-37 s16-01

Signal Processing for
Channel 01 (SP_Ch01)

...

s01-39

...

s02-38 s02-37 s02-01

...s03-38 s03-37 s03-01

s04-38 s04-37 s04-01

s16-38 s16-37 s16-01

...

...

s01-37 s01-02s01-38

Signal Processing for
Channel 02 (SP_Ch02)

...

s02-39

(a) (b)

s01-41 s02-41 s03-41 s16-41

...

...

Clock

Sample From
Analog Frontend

...Processing
Schedule

Locked by
Channel 01

Locked by
Channel 02

Locked by
Channel 03

Locked by
Channel 16

...

...

...

s01-42

Locked by
Channel 01

(c)

Fig. 6. (a-b) An example of the data flow in the input systolic buffer array.
(c) The channel-interleaving schedule for the systolic buffer array.

B. Overall Architecture

The overall architecture of NEUSORT2.0 are shown in
Fig. 7. The input are 9-bit channel-interleavingly time-
multiplexed neural samples from the optimized multiple-
channel analog frontend interface circuitry. The output data
after the signal processing consist of 68 bits of three fea-
tures, timing information, and the channel index of the
spike events. The NEUSORT2.0 has exactly the same three
processing units as NEUSORT1.0—a 32-tap programmable
noise shaping filter, NEO-based spike detector, and maxi-
mum/minimum feature extraction engine. However, the data
registers in the data path are replaced to the proposed
systolic array buffers. The first systolic array buffer stores
16 segments of spike waveforms for the spike detection
and noise shaping filter engines. The other systolic array
buffer stores 16 sets of the intermediary maximum, minimum
values, and time information for feature extraction engine.

In NEUSORT1.0, the operation frequency is 40 kHz that
is the sampling rate of the neural signal. In NEUSORT2.0,
because 16 times of data are input and processed, 640 kHz
operation frequency is used. For each channel, the data are
processed ones per 16 cycles. If there is a spike event fired
in one channel, it requires 41×16 cycles to complete the
detection, filtering, feature extraction, and coding procedures.
Compared with NEUSORT1.0, Because the hardware is
driven by a 16-times faster operation frequency, the process-
ing delay time is still 1.025 msec.

After the system configuration, the neural samples are
input interleavingly channel by channel and shifted in the

Neural signal
(from ADC)

...

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

spike
Feature

(to system
bus)

Programming
control signal
(from system

bus)

Spike Detector

Coefficients Register Array

Max- M in Detector

System Control Unit

Channel-specified
Noise Shaping filter Coder

&
Packer

Feature Buffer

Feature Buffer

Feature Buffer

Feature Buffer

...

...

Fig. 7. The overall architecture of NEUSORT2.0.

TABLE I

GATE COUNT PROFILE OF NEUSORT1.0

Hardware Component Gate Count (k) Ratio (%)
Serial-to-Parallel Register Array 1.51 8.39

Feature Buffer 0.25 1.39
Spike Detection Unit 1.22 6.78

Noise Shapping Filter 11.53 64.09
Coefficient Register Array 1.19 6.61
Feature Extraction Engine 0.49 2.72

Coder&Packer 0.46 2.56
System Control Unit 0.46 2.56

Others 0.88 4.89
All 17.99 100.00

TABLE II

COMPARISON BETWEEN NEUSORT2.0 AND 16 OF NEUSORT1.0S

Processing Area
Latency Area Power ×Power
(msec) (Mm2) (uW) (um2×uW)

NEUSORT1.0×16 1.025 1.21×16 106.7×16 33.26×109

NEUSORT2.0 1.025 3.36 1830 6.16×109

Saving 0 82.74% -7.19% 81.50%

systolic array buffer. It takes 39×16 latency cycles to pre-
load the systolic array buffer. After this latency, the processor
is continuously operated and automatically switched from
channel to channel without any bubble and latency cycle.
100% hardware utilization is achieved.

IV. IMPLEMENTATION RESULTS

In order to have a fair comparison between the parallel
structure and the proposed serial structure, we implement
both NEUSORT1.0 and NEUSORT2.0 with .35 μm 2P4M
process. Table I shows the gate count profile of NEU-
SORT1.0. More than 70% of area is used for three processing
units. Only 10% of area is used for the data buffer in the
data path. If the parallel structure is adopted to support mul-
tiple channels, the area increases linearly with the channel
number. With the proposed systolic array buffer and channel-
interleaving schedule, 70% area of the processing units are
reused with 100% hardware utilization. Only 10% area of
storage buffer increases linearly with the channel number.
In this way, a neural signal processor can support multiple
channels with a very small area overhead.

Table II shows the comparison between the usage of NEU-
SORT2.0 and 16 of NEUSORT1.0s in a 16 channel neural

recording system. With the systolic array buffer and channel-
interleaving schedule, 82.74% chip area is saved. There is
8.2% power overhead for the systolic array buffer. Therefore,
the totally saving is 81.50% if the power consumption and
the chip area are jointly considered.

V. CONCLUSION

To provide high performance neural signal processor
(NSPs) for multiple-channel neural recording systems is
challenging. The parallel structure duplicating the NSPs takes
a heavy burden on chip area, while the serial structure
requires a bulky memory between the recording circuitry
and NSP. In this paper, a memory hierarchy of systolic array
buffer is proposed to support signal processing interleavingly
channel by channel in cycle basis to match up with the data
flow of the optimized multiple-channel frontend interface cir-
cuitry. Based on the one-channel NSP of NEUSORT1.0 [1],
the proposed memory hierarchy is realized on NEUSORT2.0,
a 16-channel version of NEUSORT1.0. Compared to 16 of
NEUSORT1.0, NEUSORT2.0 demonstrates a 81.50% saving
in terms of area×power factor.

REFERENCES

[1] M. Chae et al., “A 128-channel 6mw wireless neural recording ic with
on-the-fly spike sorting and uwb transmitter,” in Proc. of ISSCC, Feb.
2008, vol. 7, pp. 146–147.

[2] M.D. Linderman et al., “Signal processing challenges for neural
prostheses,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp.
18–28, 2008.

[3] Z. Zumsteg et al., “Power feasibility of implantable digital spike sorting
circuits for neural prosthetic systems,” IEEE Trans. on Neural Systems
and Rehabilitation Engineering, vol. 13, no. 3, pp. 272–279, 2005.

[4] R. H. Olsson et al., “A three-dimensional neural recording microsystem
with implantable data compression circuitry,” IEEE Journal of Solid-
State Circuits, vol. 40, no. 12, pp. 2796–2804, 2005.

[5] R. R. Harrison et al., “A low-power integrated circuit for a wireless
100-electrode neural recording system,” IEEE Journal of Solid-State
Circuits, vol. 42, no. 1, pp. 123–133, 2007.

[6] K. G. Oweiss et al., “Optimizing signal coding in neural interface
system-on-a-chip modules,” in Proc. of IEEE EMBS Conference, Sept.
2003, vol. 3, pp. 2216–2219.

[7] K. H. Kim et al., “Neural spike sorting under nearly 0-db signal-to-
noise ratio using nonlinear energy operator and artificial neural-network
classifier,” IEEE trans. on Biomedical Engineering, vol. 47, no. 10, pp.
1406–1411, 2000.

[8] Z. Yang et al., “A neuron signature based spike feature extraction
algorithm for on-chip implementation,” in Proc. of IEEE EMBS
Conference, Aug. 2008.

[9] M. Chae et al., “Design optimization for integrated neural recording
systems,” to appear, IEEE Journal of Solid-State Circuits, June 2008.

